قضاوت بر اساس نتایج سری اول تحقیقات آکادمیکی که به بررسی عملکرد ChatGPT در حوزه مالی میپردازد، نشان میدهد که بخش زیادی از هیاهوی ماههای گذشته درباره این چتبات هوش مصنوعی درست بوده است. مثلا ChatGPT میتواند سخنرانیهای مبهم مدیران بانک مرکزی آمریکا را بهنوعی تحلیل کند یا اینکه تاثیرگذاری مثبت یا منفی اخبار روی قیمت سهام شرکتهای مختلف را تشخیص دهد.
به گزارش بلومبرگ، در این ماه دو مقاله جدید منتشر شده است که عملکرد چتبات هوش مصنوعی ChatGPT را در تحلیل حوزه مالی مورد بررسی قرار دادهاند. یکی از مقالات به تحلیل سیاست پولی فدرال رزرو براساس اظهارات مدیران آن میپردازد و دومی نیز تاثیر اخبار مرتبط با شرکتها بر پیشبینی روند حرکت بازار سهام را بررسی میکند.
نتایج هر دو پژوهش نشاندهنده یک گام بزرگ رو به جلو در استفاده از این فناوری برای تبدیل مجموعهای از متون، از مقالات خبری گرفته تا توییتها و سخنرانیها به سیگنالهای معاملاتی است.
البته که تحلیلگران کمی (Quant) در وال استریت، مدتهاست که از مدلهای زبانی زیربنایی این چتباتها برای بهبود بسیاری از استراتژیهای معاملاتی خود استفاده میکنند. با این حال، این یافتههای جدید نشان میدهد که فناوری هوش مصنوعی توسعهیافته توسط شرکت اوپنایآی (OpenAI) به سطح جدیدی از تجزیهوتحلیل چهارچوب و جزئیات رسیده است.
اسلاوی مارینوف (Slavi Marinov)، مدیر بخش یادگیری ماشین در «من ایاچال» (Man AHL)، پلتفرمی که سالها از فناوری موسوم به پردازش زبان طبیعی برای خواندن متنهایی مانند صورتدرآمدها و پستهای ردیت استفاده میکند، میگوید:
چتبات ChatGPT یکی از موارد نادری بود که هایپ آن واقعی است.
مقاله اول با عنوان «آیا ChatGPT میتواند فد اسپیک – اظهارات مبهم روسای فدرال رزور – را رمزگشایی کند؟» منتشر شده است. دو محقق این پژوهش که خود از دفتر فدرال رزرو در شهر ریچموند هستند، دریافتند که تحلیل ChatGPT درمورد انقباضی یا انبساطیبودن اظهارات بانک مرکزی بسیار نزدیک به تحلیل انسان است. آن لاندگارد هنسن (Anne Lundgaard Hansen) و سوفیا کازینیک (Sophia Kazinnik) در این مقاله نشان دادند که ChatGPT مدل هوش مصنوعی گوگل به نام برت (BERT) و همچنین مدلهای یادگیری مبتنی بر فرهنگ لغات را شکست داده است.
بر اساس این مقاله، ChatGPT حتی توانسته بود تا طبقهبندی خود را از اظهارات فدرال رزرو درباره سیاست پولی بهگونهای توضیح دهد که شبیه به تحلیلگران بانک مرکزی باشد. همچنین، در تفسیر خود این اظهارات را به مثابه یک معیار انسانی در نظر گرفت.
این جمله را از بیانیه فدرال رزرو در مه ۲۰۱۳ (اردیبهشت ۱۳۹۲) در نظر بگیرید: «شرایط بازار کار در ماههای اخیر بهبود یافته، اما نرخ بیکاری همچنان بالاست». ChatGPT در تفسیر این خط گفت که این اظهارات به معنای سیاست پولی انبساطی است؛ زیرا نشان میدهد شرایط اقتصادی هنوز بهطور کامل بهبود نیافته است. این تفسیر چیزی شبیه به نتیجهگیری تحلیلگری با نام متیو برایسون (Matthew Bryson) بود که این مقاله از او بهعنوان مردی ۲۴ سالهای یاد میکند که بهواسطه هوش و ذکاوت خود مشهور است.
مقایسه نتیجهگیریهای برایسون، چتجیپیتی ۳ و ۴. مقاله دوم نیز با نام «آیا ChatGPT می تواند روند حرکت قیمت بازار سهام را پیشبینی کند؟ پیشبینیپذیری بازدهی و مدلهای زبانی بزرگ» منتشر شده است. الخاندرو لوپز لیرا (Alejandro Lopez-Lira) و یوهوا تانگ (Yuehua Tang)، محققان این پژوهش در دانشگاه فلوریدا، از ChatGPT خواستند تا بهعنوان یک متخصص مالی و مفسر عناوین اخبار مربوط به شرکتها عمل کند. آنها از اخباری استفاده کردند که پس از نوامبر ۲۰۲۱ (آبان ۱۴۰۰) منتشر شده بود؛ دورهای که دادههای آن در آموزش چتبات پوشش داده نشده نبود.
این مطالعه دریافت که پاسخهای ChatGPT نشاندهنده یک پیوند آماری با حرکتهای آتی بازار سهام است؛ نشانهای از اینکه این فناوری میتواند تاثیرات اخبار بر بازار را بهدرستی تحلیل کند.
برای نمونه، این چتبات درمورد اینکه آیا تاثیر تیتر «شرکت ریمینی استریت در پرونده اوراکل ۶۳۰٬۰۰۰ دلار جریمه شد» برای اوراکل خوب بود یا بد، توضیح داد که تاثیری مثبت دارد؛ زیرا، این جریمه «بهطور بالقوه میتواند اعتماد سرمایهگذاران را نسبت به توانایی اوراکل در حفاظت از مالکیت معنوی خود و رشد تقاضا برای محصولات و خدمات خود افزایش دهد».
در حال حاضر برای اکثر تحلیلگران سطح بالا استفاده از پردازش زبان طبیعی برای سنجش میزان محبوبیت یک سهام در توییتر یا تحلیل تاثیرات آخرین اخبار مربوط به یک شرکت روشی تقریبا جاافتاده است. اما به نظر میرسد که پیشرفتهای اخیر ChatGPT میتواند مجموعهای از اطلاعات جدید را ارائه کند و این فناوری را در دسترس طیف گستردهتری از متخصصان مالی قرار دهد.
مارینوف معتقد است در حالی که هیچ جای تعجبی وجود ندارد که ماشینها میتوانند تقریبا به خوبی افراد اطلاعات را تفسیر کنند، ChatGPT بهطور بالقوه میتواند کل این فرآیند را سرعت ببخشد.
زمانی که «من ایاچال» برای اولین بار مدلهای یادگیری خود را میساخت، تحلیلگران این صندوق پوشش ریسک بهصورت دستی تاثیر مثبت یا منفی هر جمله را برای داراییها مشخص میکردند تا به ماشینها در ایجاد چهارچوبی برای تفسیر زبان کمک کنند. سپس این شرکت مستقر در لندن برای استفاده از همه کارمندان خود، کل این فرآیند را به یک بازی تبدیل کرد که شرکتکنندگان را رتبهبندی و میزان توافق آنها درباره هر جمله را محاسبه میکرد.
این دو مقاله جدید نشان میدهند که ChatGPT میتواند کارهای مشابهی را بدون نیاز به آموزش خاص انجام دهد. تحقیقات فدرال رزرو نشان داد که فناوری یادگیری بدون مشاهده نمونههای قبلی (Zero-Shot Learning) پیشرفت بسیار زیادی نسبت به نسخههای قبلی خود داشته است. اگرچه که بهینهسازی این چتبات بر اساس تعدادی نمونه مشخص خروجی را آن بسیار بهتر میکند.
مارینوف که در گذشته همبنیانگذار یک استارتاپ مبتنی بر یادگیری زبان طبیعی بوده است، گفت:
پیش از این باید دادهها را خودتان برچسبگذاری میکردید. اکنون میتوانید آن را با طراحی فرمان (Prompt) مناسب توسط ChatGPT انجام دهید.
بلومبرگ الپی، شرکت مادر بلومبرگ نیوز نیز در ماه گذشته یک چتبات هوش مصنوعی مبتنی مدل زبانی بزرگ برای تحلیل امور مالی منتشر کرده بود.